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Oscillatory dynamics of a nonlinear amplifier in the high-gain regime:
Exploiting a global connection
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We study the oscillator equations describing a type of nonlinear amplifier, exemplified by a two-junction
superconducting quantum interference device. Just beyond the onset of spontaneous oscillations, the system is
known to show significantly enhanced sensitivity to very weak magnetic signals. The global phase-space
structure allows us to apply a center manifold technique to calculate the frequency of spontaneous oscillations
as a function of the natural control parameters. The derived scaling form compares very well with numerical
simulations. The ability to quantify the oscillation frequency permits its exploitation as a detection/analysis
tool in remote sensing applications, and could also provide a pathway to a dynamic lowering of the low-
frequency noise floor in oscillators exhibiting this class of dynamical behavior.
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Nonlinear dynamical systems are very sensitive to sm
perturbations close to the onset of a bifurcation. This is
sponsible for the enhanced difficulty in screening out u
wanted environmental perturbations near bifurcation poi
as observed in experiments of virtually all types, rang
from electrical to mechanical, optical, and fluid system1

Yet, this very same sensitivity affords a general mechan
for signal amplification for a broad class of nonline
devices.2

A rather different mechanism which can improve a s
tem’s sensitivity to weak signals is stochastic resona
~SR!.3 Recently, there has been progress towards exploi
the SR effect in dc superconducting quantum interfere
devices ~SQUID’s!, to take advantage of the backgroun
noise rather than devise ever more sophisticated shiel
and cancellation mechanisms.4 Experiments are underway t
carry out this scheme in high-Tc SQUID arrays. These de
velopments are driven by the SQUID’s role as the most s
sitive detector of magnetic fields, whose practical appli
tions are usually noise limited.5 These devices are expecte
to find increasing utility in a variety of remote sensing app
cations in areas as diverse as biomagnetics, geophy
mine/explosive detection, and fundamental measuremen

The dc SQUID consists of two Josephson junctions sy
metrically inserted into a superconducting loop.6 In the ab-
sence of external signals, it exists in either a static~super-
conducting! or a dynamic~finite voltage! state, depending on
biasing. As with many physical systems, the dynamics
low the ‘‘particle-in-a-potential’’ paradigm, with the poten
tial function having multiple stable minima in the static cas
In this state, the dynamical variables~the Schro¨dinger phase
angles! converge to constant values at long times. As a
rameter is varied through a bifurcation point, the poten
minima disappear and the system is attracted to a peri
orbit, corresponding to oscillatory solutions for the pha
angles modulo 2p or the experimentally observable circula
ing current.7 Recent experiments and simulations4,8 show
that the best response to an input signal~in the presence of a
PRB 620163-1829/2000/62~14!/9232~4!/$15.00
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background noise floor! is obtained just past the bifurcatio
point, where one observes very sensitive input signal dep
dence of the solutions~i.e., high gain!. It is thus of special
significance to understand and quantify the dynamics in
regime.

In this paper, we present an analytic calculation of t
spontaneous oscillation frequency and its scaling in term
the ~control! parameter ‘‘distance’’ from the singular poin
Close to the singular point there is a well-defined separa
of time scales which can be exploited using a center ma
fold technique to reduce the effective phase-space dim
sion. That we can apply the technique here is somewhat
usual, and is possible only because of the global structur
the dynamics. In particular, the phase-space topology
duces asaddle-node connection,9,10 so that the normally ‘‘in-
accessible’’ running state regime—inaccessible in the se
of direct analytic treatment—is rendered accessible, at le
close enough to the bifurcation point.

Previous theoretical work has afforded a good descript
of various other properties of the SQUID dynamics in t
static11 and running12 regimes. Our goal here is to determin
explicitly the oscillation frequency, which is related to th
voltage across the device,6,7 in terms of the bias parameter
Knowing the frequency affords the possibility of dynam
cally lowering the low-frequency noise floor by injecting
bias signal at this frequency or one of its overtones. Qua
fying small changes in the frequency that occur in the pr
ence of external~target! signals could afford a detectio
mechanism, and experiments involving synchronization to
external signal or to another SQUID would inevitably bene
from an a priori knowledge of the oscillation frequency i
terms of the bias parameters.

The SQUID dynamics are described by equations for
Schrödinger phases of the~assumed identical! Josephson

junctions:6,8 tḋ i5I b/21(21)i I s2I 0 sindi , i 51,2, where
I s , the circulating current induced in the loop by an extern
magnetic flux, can be written in the formbI s /I 05d12d2
R9232 ©2000 The American Physical Society
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22pFe/F0. Here,t5\/(2eR) is a characteristic time con
stant ~R being the normal state resistance of the junction!,
b[2pLI 0 /F0 the nonlinearity parameter,L the loop induc-
tance, I 0 the junction critical current, andF0[h/(2e) the
flux quantum. The two natural experimental control para
eters are the applied dc magnetic fluxFe and the dc bias
currentI b , which we take to be symmetrically applied to th
loop. It is convenient to introduce a scaled time, flux (Fex
[Fe /F0), and current@J[I b/(2I 0)#, and to rewrite the dif-
ferential equations in terms of the sum and differen
variables,6,13,14 S[(d11d2)/2, d[(d12d2)/2, with the re-
sult ~defininga[pFex),

ḋ52
2

b
~d2a!2cosS sind

Ṡ5J2cosd sinS. ~1!

The key qualitative feature of the dynamics is illustrat
in the phase-space portrait of Fig. 1. In the superconduc
regime, the system is attracted to a stable fixed po
(d0 ,S0), whose position is a function of the three syste
parameters:b, a, andJ. For fixeda andb, there is a specia
value,Jc , of the bias current above which the supercondu
ing state is destroyed: forJ.Jc the system displays periodi
voltage oscillations. The thresholdJc can be readily com-
puted numerically or analytically,8 in good agreement with
experiment. Close to the bifurcation point, the system
counters a ‘‘bottleneck’’ once each period near the po
where the stable~node! fixed point annihilates with an un
stable~saddle! fixed point. The term ‘‘saddle-node conne

FIG. 1. Phase portrait for the SQUID system. Close to the
furcation pointJ5Jc all orbits are attracted on a fast time scale
the one-dimensional subspace~bold!; evolution along the cente
manifold is slow~note that the length of an arrow’s tail is propo
tional to the local flow rate!. The local analysis Eq.~2! only de-
scribes the boxed region, but this captures the main contributio
the total period of the running state whenJ.Jc . The plot shown is
for Fex50.2,b51, andJ2Jc50.007.
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tion’’ refers to the existence of orbits connecting each no
to a saddle and each saddle to the next node. When
bifurcation occurs, a running state is created in a global
furcation, the attractor resulting from the chain of~merged!
saddle-node-saddle connections. The ensuing oscillat
having the form of relaxation oscillations.7

The resulting oscillation frequency is generally very hig
so that usually only the time-averaged quantityĪ s is mea-
sured in experiments~see, however, Ref. 14, where the o
cillations were actually observed and the frequency co
puted in the extreme limiting case ofb!1). The SQUID
response can be defined via anĪ s vs Fex transfer character-
istic and quantified in the oscillatory regime through a co
putation of the input-output gain or the output signal-to-no
ratio ~SNR! at the frequency of a weak injected signal, as
function of the bias parameters (J,Fex).

4,8 As emphasized
above, the optimal response~highest gain or output SNR! is
obtained just beyond the onset of oscillations. In what f
lows, our goal is to determine the spontaneous oscillat
period in this regime. As we show, the result has a sim
scaling form and compares well with direct numerical sim
lations of the full nonlinear equations~1!.

The calculation proceeds in three steps. First, we cons
the singular point atJ5Jc , and determine the center man
fold. Second, we unfold the dynamics for values ofJ close to
Jc to generate the local nonlinear dynamics along the ce
manifold. Crucially, this local analysis captures the ve
slow dynamics which is responsible for the long period
the running state. Third, we get a quantitative expression
the running period by solving the reduced equation. The
sult is increasingly accurate asJ→Jc .

We start by considering the dynamics in the vicinity
the fixed-point solution whenJ5Jc . We introduce the smal
quantitiesx5d2d0 and y5S2S0 and Taylor expand the
vector field to quadratic order,

ẋ52S 2

b
1AD x1By1Cx212Dxy1Cy21O~3!,

ẏ52Ay1Bx1Dy212Cxy1Dx21O~3!, ~2!

whereA5cosS0 cosd0, B5sind0 sinS0, C5 1
2 sind0 cosS0,

and D5 1
2 cosd0 sinS0, and O(3) represents terms of cubi

order and higher. A simple rotationS diagonalizes the linea
part

SS x

yD 5S u

v D ; S5S cosu sinu

2sinu cosu D , ~3!

where tan 2u52b sind0 sinS0, so that

d

dt S u

v D 5S l 0

0 0D S u

v D 1SS Cx212Dxy1Cy2

Dy212Cxy1Dx2D , ~4!

wherel522/b22 cosS0 cosd0. To linear order, therefore
the trajectories relax tou50 with exponential ratel while
thev evolution is neutral. The center manifold is determin
by setting du/dt50 and solving the resulting algebra
equation foru(v).

We can repeat the same steps close to, but not prec
at, the bifurcation point. Technically,10 we treat the aug-

i-

to



ed

t

e

he

ted

uced

-
ll

me.
imit
he
in

d
ith

he
rive

rds
he

the
to

be-
ca-
al
ing
e
the
to

d in

ed
in
re-

ncel-
ust
set

ure,
av-
th-
h-
ears
wn
aper
it-

e
at

er
m

le

RAPID COMMUNICATIONS

R9234 PRB 62K. WIESENFELD, A. R. BULSARA, AND M. E. INCHIOSA
mented dynamical system, adding the equationdJ/dt50 to
Eq. ~1!, and expand the dynamics about the critical fix
point (d0 ,S0 ,Jc). The resultingu-v subsystem~4! is modi-
fied only by a new constant term:

d

dt S u

v D 5SS 0

J2Jc
D 1S l 0

0 0D S u

v D
1SS Cx212Dxy1Cy2

Dy212Cxy1Dx2D , ~5!

whereJ2Jc is of orderx2. It follows that u̇5lu1O(2), so
that the attracting subspace isu5O(2), and theevolution of
v on the center manifold is given by

v̇5~J2Jc!cosu1av21O~3!, ~6!

where the constanta is readily determined by carrying ou
the matrix multiplication indicated in Eq.~5!, with resulta
52sinu(C2D sin 2u)1cosu(D2Csin 2u). Ignoring terms
of cubic order and higher, we may now integrate Eq.~6!
directly, realizing that the dynamics~for small J2Jc) is
dominated by the passage through the ‘‘bottleneck’’ wherv̇
is at its smallest. We obtain the solution,

v~ t !5AF

a
tan~AFa t ! ~7!

with F[(J2Jc)cosu, whence the periodT of the oscilla-
tions is15

T5p/AFa. ~8!

FIG. 2. Log-log plot of oscillation frequencyf [1/T vs J2Jc

determined from direct numerical simulations~points! and the ana-
lytic prediction Eq.~8! ~line!, for various values ofb, Fex , andJ.
Figure 1 was drawn for the same parameters as the middle
panel.
Figure 2 compares this with numerical simulations of t
full nonlinear dynamics given by Eq.~1!. The simulations
were run for a range of system parametersb andFex : owing
to a parameter symmetry the full range ofFex is between 0
and 0.5; meanwhile, practical SQUID’s are often fabrica
to haveb'1. In the figure, the solid line represents Eq.~8!,
and the data are plotted over three decades in the red
parameterJ2Jc . In a typical SQUID,J2Jc50.001 might
correspond to;5 – 10 nA, with the oscillation frequency be
ing in the GHz regime.4 The agreement is good over the fu
range shown; it is excellent for smaller values ofb andFex .
The agreement grows systematically worse for largerb and
Fex , since either reduces the size of the bottleneck regi
Even in the latter cases, the agreement improves in the l
J→Jc , i.e., close enough to the bifurcation point, where t
SQUID yields its optimal response to weak target signals
the presence of a noise floor. In this regime, the computeĪ s
vs Fex transfer characteristic agrees remarkably well w
experimentally obtained ones.4,8

In laboratory settings, it is often convenient to use t
applied dc flux as the control parameter. We can easily ar
at the analogous result to Eq.~8! by keepingJ fixed, and
sweepingFex through its critical valueFexc at the bifurca-
tion. This simply modifies the prefactor of Eq.~8!, so T
scales with the same exponent inFex2Fexc.

The above calculation represents a critical step towa
exploiting the nonlinear response of the dc SQUID in t
oscillatory regime. In our experiments4 the SQUID is oper-
ated as a free-running nonlinear dynamic device, not in
conventional flux-locked mode; hence, one is in a position
observe and exploit the richness of nonlinear dynamic
havior that would otherwise be inaccessible. In one appli
tion, the presence of an additional unknown ‘‘target’’ sign
can be quantified by observing its effect on the free-runn
SQUID: a dc signal will shift the oscillation frequency, whil
a periodic signal will also generate combination tones in
power spectrum. A rather different effect can be used
dynamically suppress the low-frequency noise backgroun
the SQUID itself, by injecting aknownbias signal close to
the running frequency and inducing a frequency lock
state.16 Given the problems associated with operating
noisy/unshielded environments, this procedure could rep
sent a major step in the active research area of noise ca
lation. Investigations into these and other related topics m
begin with an analysis of the effects of noise on the on
and frequency of the spontaneous oscillations.

Our calculation relied on a global phase-space struct
namely the saddle-node connection. While oscillatory beh
ior arising from this structure is rare in some general ma
ematical sense,9 it arises here from the fact that the Josep
son variables are phase angles. A similar structure app
frequently in the class of coupled oscillator systems kno
as phase models. Thus, the treatment used in this p
should find wider application in, for instance, certain exc
able biological oscillators and switches.17
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